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ABSTRACT: Three estimation models of polypropylene
(PP) process to infer the melt index, an important quality
indicator determining product specification, are presented.
Radial basis function (RBF) neural network (NN) is used
to develop the models because of its capacity of fitting the
complex relationship in PP process. A novel ant colony
optimization (ACO) algorithm is also proposed and used
to solve the optimization problem of the continuous link-
ing weights when training the RBF NN. Based on the RBF
NN and the novel ACO algorithm, a single NN model is
developed. However, a single network cannot always
work well due to some defects (such as overfitting) of a
NN. Thus, as an improvement of the single NN model,
several RBF NN trained with a certain objective are com-
bined, and the aggregated NN model is obtained. To
make the aggregated NN more robust and effective, an

adaptive method of assigning the combinational weight to
every individual network is applied to the former aggre-
gated NN model and finally an adaptive aggregated NN
model is achieved. Further researches of the three models
are carried out on the data from a real industrial plant,
and the prediction result shows that the performance of
the obtained prediction models is better and better with
every improvement step taken as above. The adaptive
aggregated NN model works best, and the satisfying pre-
diction error it provides depicts its prediction accuracy
and universality, as well as an application prospect in PP
process. © 2011 Wiley Periodicals, Inc. ] Appl Polym Sci 125:
943-951, 2012
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INTRODUCTION

The industry of polypropylene (PP) production has
a critical influence in the world, especially in aspects
of related industries, military, economy, and so on.
The increasing global competition pushes the poly-
mer industry to improve the product quality and
reduce the cost. Consequently, the advanced moni-
toring and controlling of the properties of the prod-
ucts in PP process becomes a very important strat-
egy in this field. PP MI, which is the key parameter
in determining the product’s property and quality
controlling of practical industrial process, is defined
as the mass rate of extrusion flow through a speci-
fied capillary under certain condition of temperature
and pressure." There are certain instruments devel-
oped to measure the MI directly, but these instru-
ments are very expensive and difficult to maintain.
Therefore, the PP is usually sampled on line and
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then measured off-line with an analytical procedure
in the laboratory to obtain the MI of the product.
However, the procedure takes a long time of 2—4 h,
so the measured MI cannot be used to instruct the
production. Off-specification products and enormous
losses in profit are always resulted in.> The MI needs
to be given timely and accurately, thereby it makes
the development of MI on-line estimation model, not
only as an on-line sensor but also as a forecasting
system, very necessary.

As the MI is difficult to be measured directly, it is
common to figure it out in an indirect way. Between
the MI and some other easy-measured variables,
there are some certain relationships that can be used
to develop the MI prediction model. To infer the
difficult-to-measure variable from easy-to-measure
variables, the chemical and physical relationships
can be used; thus, an on-line analyzer can be con-
structed with referring to the exact mechanism of
polymerization process. However, the approach to
model from the industrial process mechanism*® is
faced with a big challenge, due to the sophisticated
engineering activity and the relatively high complex-
ity of kinetic behavior and operation of polymer
plants. The chemical and physical reactions in the
reactors are so complicated that modeling the reac-
tors or the reaction processes that happen in the
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reactors” '’ becomes a task with huge difficulty. De-
spite the simplification of the mechanical models, it still
needs great efforts to fit the inner relationship between
MI and some of the factors in the reaction.'’"?

Another approach, the empirical model based on
data and statistics, can estimate the hard-to-measure
variable from the easy-to-measure variables without
considering the complex chemical or physical reac-
tions. Some industrial plants have used statistical
methodologies to provide information for product
and process design, monitoring and control,">™® and
some researchers have also obtained easy empirical
models for PP MI prediction through various meth-
ods. Han'® used three different approaches, sup-
ported vector machines (SVM), partial least squares,
and artificial neural networks (NN) for MI estimation
of PP process. Shi***! developed soft-sensor models
for MI prediction based on weighted least squares
support vector machines and independent component
analysis, multiscale analysis, and radial basis function
(RBF). NN have been widely applied to develop
data-based model and control dynamic processes
because of their extremely powerful adaptive capabil-
ities in response to nonlinear behaviors.***> Thus,
Zhang** sequentially trained a set of NN, based on
which the novel bootstrap aggregated NN are
formed. Moreover, with the model developed by the
aggregated NN, quite a good performance in the
inferential estimation of the polymer MI in an indus-
trial plant is obtained. These works have provided
very good predictions, but greater performance and
better universality of the estimation model are still
necessary in academic and industrial community.

Recently, the artificial NN, especially the RBF NN,
are widely used to develop empirical models for
kinds of industry processes because of its powerful
capacity in fitting the complex nonlinear relationships
in the industry processes.'®**?! It is also quite a good
choice to develop the empirical model for the PP pro-
cess with RBF NN; therefore, the networks used to
develop the MI prediction models below are all RBF
NN. However, there are several points in implement-
ing the idea, and the first one is the training of the
RBF NN. The parameters of the network, such as
linking weights between layers, biases and centers of
hidden nodes, are the determining factors of the fit-
ting capacity of the network. Because of the applica-
tion of artificial intelligent searching algorithms,
many optimization problems are solved'®*?” and
the optimization of the RBF network structure can
also be fulfilled with these algorithms. Here, a novel
ant colony optimization (ACO) algorithm is proposed
and used to optimize the RBF NN parameters; hence,
the single NN model is obtained.

Another issue is that developing the model for PP
process with a single RBF NN is not quite flexible,
as the training of the network can easily be overfit-
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ted and make the model lack of generalization
capacity. As an alternative and a more reliable
approach, aggregated networks decrease the non-
stability caused by the individual network and
many engineering problems take this approach as a
powerful solution.”*** Thus, developing the aggre-
gated NN model with aggregated networks con-
structed by a group of different networks can further
stabilize and improve the performance of the model.

To enhance the performance of aggregated NN
model, a strategy for training the individual net-
works effectively and combining these networks rea-
sonably is the most important. A sequential training
method of developing aggregated NN model is pre-
sented here, and in this method, individual net-
works are sequentially trained to be as different
from each other as possible. The first network is
trained to minimize its prediction error, whereas the
rest networks are trained to minimize the prediction
error and the correlation with each other at the same
time. To combine the networks more reasonable, an
adaptive method to differ the importance of every
network is adopted. Every time when a network is
added, the combinational weight of every network
in the aggregated networks is adjusted adaptively,
letting the network with better prediction perform-
ance make more contribution to the aggregated NN
model. According to this idea, the adaptive aggre-
gated NN model is finally developed.

Based on the approaches above, three different
models are developed. The first one is the single NN
model formed by a RBF NN trained with the novel
ACO algorithm. Then the aggregated NN model,
where every network is trained with the novel ACO
algorithm and the combinational weight of each net-
work is the same, is obtained. Finally, the adaptive
aggregated NN model is proposed, with individual
networks trained by the novel ACO algorithm but
the combinational weight of each network adap-
tively adjusted. The performance of the proposed
models is illustrated and evaluated with an actual
PP process, where the evaluation and research of the
model presented in this article is carried out. The
results obtained are then discussed and concluding
remarks about the design are presented.

ADAPTIVELY AGGREGATED NETWORKS

RBF NN and a novel ACO algorithm
RBF NN

The RBF NN has satisfying global approximation
and convergence property, which makes it the pri-
mary choice for the product quality prediction of the
complex and correlated PP process.”> ™ 1t is a typi-
cal feed-forward network with a structure of three
layers: the input layer, the hidden layer, and the
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output layer. The input layer collects the input infor-
mation and formulates the input vector x. The hid-
den layer is composed by L hidden nodes, which
apply nonlinear transformations to the input vector.
The output layer gives the final responses. The RBF
NN can be considered as a mapping in Euclidean
space: T:R" — R°. Let ¥ € R" be the input vector,
and ¢ € R"(i=1,2,---,k) be the center. The output
is formed by a linear combination of the hidden
layer responses, given by

k
yi() = wpd (|| = c[),j=1,2,-- s (1)
i=1

where ||| is the Euclidean distance, k is the number
of the hidden layer nodes, ®;(-) is the hidden layer
node response, wj; is the output weight, x” is the
input vector, y; is the output of jth output node, s is
the number of the output nodes. In the current
model, the hidden layer node uses the Gaussian acti-
vation function to make a response, that is

(=€l

d)i(]|x”—ci||):exp< s ),i=1,2,"'7k )

where ¢ and o; are the center and the width of the
ith node in the hidden layer, respectively. They
determine the receptive field around the node.

Novel ACO algorithm

ACO algorithm is a heuristic searching technique,
which is inspired by the foraging mechanism of a
real ant system and especially by the ability of the
ants to figure out the shortest path between their
nests and the food source.’* Since its first mathe-
matically submission by Dorigo in early 1990s, ACO
algorithm has been widely used in various optimiza-
tion problems but most discrete. ACO requires the
problem be presented in discrete form, while the
approach will largely influence the performance of
the final prediction model because the linking
weights in the networks are continuous real num-
bers. Thus, a novel ACO aimed at solving the con-
tinuous optimization problem here is proposed.

In the novel ACO algorithm, the solution of opti-
mization problem is expressed by one node, which
is a vector. The nodes represent food sources with
certain pheromone concentrations which are related
to the quantity of food in these sources. The objec-
tive of the ants is to find out the food source with
most quantity of food. An ant starts searching with
choosing a food source by a pheromone concentra-
tion-related probability, and tries to search around
the food source it has chosen to find a more attrac-
tive food source. If a better food source, which con-

tains more food than the original source does, is
obtained, the ant gets excited and releases more
pheromone according to the quantity of the food
found. From the mathematic point of view, food
source is a solution to the optimizing problem, and
the quantity of food in the source is the fitness of
the solution. Ants tend to search around good food
sources to find out better sources, and it means that
the algorithm is inclined to look for better solutions
of the problem around the existing solutions with
high fitness. It is the mechanism of the “local
search” of the ants, which will be introduces later.

Sometimes, the food quantity in some sources is
small and, at the same time, starting from these
points, ants cannot find out better food sources than
the original ones. Then these food sources should be
replaced with the others, which are potential to have
wonderful food sources around. To form the new
food sources, the replaced ones are used to make
combinations, where the ideas of mutation and cross
basically used in GA algorithm are used.* The idea
above is the “global search” of the ants, and the
details will be explained subsequently.

The procedure of the novel ACO algorithm is as
following:

Step 1: Prepare for the algorithm:

1.1. Initialize the searching space by giving the
total number of ants m and a series of initial food
sources S =(s1,82, -+,sy). A  food  source
si= (x1,x2,---,xp)(i=1,2,---,n) represents a solu-
tion to the D-dimension continuous optimizing prob-
lem, and n is the total number of starting points that
ants will search around.

1.2. Calculate and record the
si(i=1,2,--,n)as Fi(i=1,2,---,n).

1.3. Initialize the sequence number of iteration
k=1

1.4. Specify the parameters of global search: R,
and R,. Here, R; is the number of sources that
should be replaced by the new ones created with
mutation operation, and R, is the number of sources
that should be replaced by the new ones created
with cross operation.

Step 2: Initialize the sequence number of ant j = 1
and do the local search:

2.1. Calculate the probability for choosing the
source si(i =1,2,---,n) by:

fitness  of

Pi(k)zzfill:i(izlvz""7n) 3)

2.2. Choose a Schosen by following the roulette rules
for ant j. Meanwhile, make sure that every source could
not be chosen more than once during the kth iteration.

2.3. Create a distance with a direction
del = (dy,ds,- - -,dp) that ant j will walk and a new
SOUICE Spey 1S Obtained by:
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Snew - Schosen + del (4)

Calculate the fitness of s,e,, and save as Fp.,, if
Frew > Fchosens Snew Will be accepted and replace
Schosen 1N the set S. Foposen in the set Fi(i=1,2,-- - n)
is also updated. Else, if Frew < Fchosens do nothing.

24.j=j+1;if j > m, go to Step 3; else go back to
2.1

Step 3: In Step 2, local search has updated the set
S, as well as Fi(i=1,2,---,n), and here the global
search is processed:

3.1. Choose the sources to be replaced by follow-
ing the roulette rules. The probability for source

si(i=1,2,---,n) to be chosen is given by:
1/F; .
Ql(k :117(1:1,2,---,1’1) (5)
) i 1/Fi

The total number of sources to be chosen is Ry + R».
3.2. For the first Ry sources to be replaced with
mutation operation, let each initial source sq4 shift a

random  distance in a random  direction
del = (d1,ds,- - -,dp) to form a new source Spey:
Snew = Sold + del (6)

Replace the chosen R; sources with the new ones.

3.3. For the left R, sources to be replaced with
cross operation, let the initial source sy4 cross with a
random sSource Syandom 1N S to get a New one Spew:

Snew - P-Sold + (1 - P) : Srandom (7)

where, p is a probability parameter that can be
adjusted.

Replace the chosen R, sources with the new ones.

Step 4: k=k+1; if k > itermax, go to Step 5; else
go back to Step 2.

Step 5: Take the source spes; With best fitness Fpeq
to be the final solution of the optimizing problem.

When training an individual RBF NN based on
the training dataset, best linking weights in the net-
work are the most important parameters needed to
be optimized, where the proposed novel ACO algo-
rithm is applied.

Sequential training of the aggregated networks

A single network model can be obtained from the
above approach, butto achieve better performance,
aggregated NN model is developed, where the indi-
vidual networks are trained sequentially** and of
course by the novel ACO algorithm. The output of
the aggregated NN model is given by:

M
F(x) = ZwiFi(x) (8)

=1
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where, F is the aggregated networks, F; is the ith
individual network, and w; is the combinational
weight of the ith individual network. Here, w; is
simply assigned to be 1/M.

The first network added into the aggregated net-
works is trained by the novel ACO, with an objec-
tive function as shown in eq. (9), to minimize the
prediction error.

N
fr =52 (Fal) - dx)? ©
=1

where, N is the number of the training data points, d
is the desired model output, and x; is the jth training
data point.

After training the first network, individual net-
works are trained and added to the aggregated net-
works, sequentially. Every subsequent network is
trained to minimize the prediction error and maxi-
mize the difference from the formal trained net-
works. For example, the training objective of the ith
individual network is as follows:

1L A N ,
Ji = NX; (Fi(x;) — d(x)))? — ﬁz (Fi(x) — F(x;))
j= p
(10)
and
i1
F(x) = Zw]'Fj(x) (11)
=1
1 . )
w]‘:m,]zl,Zp--,zfl. (12)

The first term of the training objective function
minimizes the prediction error of the individual net-
work, whereas the second term minimizes the corre-
lation between the ith network and the previously
trained networks, and A is the weight of the second
term.

The linking weights in the subsequent network
are the objects needed to be optimized with novel
ACO algorithm. The training process of the aggre-
gated NN model can be terminated when its predic-
tion error no longer decreases after adding an opti-
mized subnet, or the number of the networks in the
aggregated networks is larger than a certain value.

Adaptively combination of the aggregated
networks

Though the aggregated networks can avoid the poor
performance caused by some overfitting individual
networks, when a subnet with a wonderful
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prediction performance is added, its contribution, on
the good aspect, to the aggregated NN model is lim-
ited due to the average value of its combinational
weight, which is a great pity. Thus, an adaptive
approach of combining the individual networks is
presented here, to make full use of the individual
networks with great performance and to decrease
the influence resulted from the overfitting subnets at
the same time.

The training of the first network is the same as
mentioned in last chapter, taking an objective of
minimizing the prediction error [as shown in eq.
(13)] and using the novel ACO algorithm to optimize
the linking weights in the network. After the train-
ing process, the combinational weight of the
network is assigned to be w, =1, as it is the only
network.

N
J =3 (Fulg) — dx)? (13)

j=1

Then train the subsequent networks sequentially
and add them into the aggregated networks adap-
tively, step by step. The key of the adaptive combina-
tion lies in the distribution of the combinational
weights of the individual networks. The weight of ev-
ery individual network is determined by the predic-
tion errors of itself and the other subnets previously
trained. If it is added into the aggregated networks,
the combinational weights of every single subnet will
be adjusted according to the following equation:

Wy = (1/ex)/ <21/€j>,k—1,2,~-~,i. (14)
j=1

where, w, is the combinational weight of the kth
subnet, ¢, is the prediction error of the kth individual
network as a single network model.

When training the ith subnet, the objective func-
tion is as follows:

1 A )
Ji= *Z (Fi(xj) — d(x}))” — *Z (Fi(xj) — F(x;))
N =) szl
(15)
i-1
F(x) = ch]’Fj(X) (16)
=1
However here, w(j =1,2,---,i — 1) are no longer

average values, but have been assigned certain val-
ues adaptively when the i — 1th subnet was added
into the aggregated networks.

After the training of the ith subnet, a test is car-
ried out, to determine whether the subnet should be
added into the aggregated networks. The test is to

calculate the prediction error of the aggregated NN
model on the training dataset and figure out if the
prediction error is decreased due to the adding of
the ith subnet. If so, it should be a new subnet of the
aggregated networks and the combinational weight
of every subnet is adaptively adjusted according to
eq. (14). Otherwise, it is not taken as a subnet of the
aggregated networks, and the training and adding
new networks into the aggregated networks are
stopped. The networks already trained and added
into the aggregated networks will be kept and the
output of the adaptive aggregated NN model can be
obtained according to eq. (16), but the combinational
weights have been adaptively adjusted every time
when a new network is added into the aggregated
networks.

The termination criteria is not changed, that is ter-
minating the algorithm and returning the aggregated
network model when the adding of a new subnet
cannot decrease the prediction error of the adaptive
aggregated NN model, or when the number of the
subnets in the aggregated networks is larger than a
specified value.

CASE STUDY

A propylene polymerization process, which is cur-
rently operated for commercial purposes in a real
plant in China, is considered in this article, and Fig-
ure 1 depicts the schematic diagram of the process.
The process consists of a chain of reactors in series,
two continuous stirred tank reactors, and two fluid-
ized-bed reactors. The fed to the reactor is com-
prised of propylene, hydrogen, and catalyst. These
liquids and gases are reactants for the growing poly-
mer particles and also the provider of the heat trans-
fer media. In the first two reactors, the polymeriza-
tion reaction takes place in a liquid phase, and in
the third and fourth reactors, the reaction is com-
pleted in vapor phase to produce the powdered
polymer products. The melt index (MI) of the PP,
which determines the properties and quality of the
product, depends on the catalyst properties, reactant
composition, and reactor temperature, and so
on. Hydrogen can also regulate the molecular weight
of PP.

To develop a prediction model to estimate the MI
from a group of easy-measured variables, a pool of
process information formed by nine process varia-
bles (T, p, I, a, f1, f2, f3, fa, and f5) in PP process intro-
duced above, which influence the process most
greatly according to experience and mechanism,
have been chosen. T, p, [, and a are process tempera-
ture, pressure, level of liquid, and percentage of
hydrogen in vapor phase respectively. fi, f>, f5 repre-
sent flow rates of three streams of propylene into
the reactors, and f, and f5 are flow rates of catalyst

Journal of Applied Polymer Science DOI 10.1002/app
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Figure 1 General scheme of propylene polymerization.

and aid-catalyst. A group of operational data has
been taken from the discrete control system (DCS)
historical log recorded in the real propylene poly-
merization plant, and the data are filtered at first, to
discard abnormal situations and to improve the
quality of prediction model. Normalization operation
is also implemented to the input and output varia-
bles with respect to their maximum and minimum
values. How to choose the most suitable training
dataset from all the available process information is
one of the most important issues before model learn-
ing. The approach to construct the training dataset
here is dividing the data into training dataset, test-
ing dataset, and generalization dataset according to
the time series of the recorded data, then single NN
model, aggregated NN model, and adaptive aggre-
gated NN model are developed based on the train-
ing dataset. After the training of the models is fin-
ished, the testing dataset and generalization dataset
are used to test the accuracy and the universality of
the predictions of the models. There are 120 points
in the training dataset and 30 points in the testing
dataset, respectively, leaving the rest of the chosen
data regarded as the generalization dataset. That the
testing dataset and training dataset are from the
same batch, whereas the generalization dataset is
derived from another batch, is an important issue
should be noted, because on this condition an accu-
rate prediction on the testing dataset and the gener-
alization dataset indicates the overall accuracy pre-
diction and the pretty universality of the model,
respectively. The RBF NN used here has five neu-
rons and every neuron gets an activation function of
“Gaussian function” as described in eq. (2). The sin-
gle RBF NN used the novel ACO to training its
weights, bias, and so on. To study the MI prediction
accuracy of models statistically, the difference
between the output of the models and the desired
output (the analytic MI values from laboratory) is
considered as the error and represented in several
ways. In this article, the following measures are

Journal of Applied Polymer Science DOI 10.1002/app

used for model evaluations: mean absolute error
(MAE), mean relative error (MRE), root of mean
square error (RMSE), and Theil’s inequality coeffi-
cient (TIC). The calculation equations of these error
indicators are shown as following:

1 X
MAE = NZ vi — ¥l 17)
i=1
1N |y —
MRE = — (18)
Ny
1 o
RMSE =, | (i — i) (19)
i=1

N A N2
;(]/i_]/z’)

e

;ﬁ+ ;%

where y; and #/; denote the measured value and pre-
dicted result of MI, respectively.

The MAE, MRE, and RMSE confirm the prediction
accuracy of the proposed methods. TIC indicates a
good level of agreement between the proposed
model and the studied process.*

The data listed in Table I show that the adaptive
aggregated NN model has the best performance
overall on the testing dataset. In a detailed study
through error indicators mentioned above, single
NN model gives an MAE of 0.0286, an MRE of
1.09%, a RMSE of 0.0341, and a TIC of 0.0064. For
the aggregated NN model, composed by a group of
RBF NNs optimized with the novel ACO algorithm,
obtains an MAE of 0.0205, an MRE of 0.78%, a
RMSE of 0.0252, and a TIC of 0.0047. The aggregated
NN model has already obtained improved predic-
tion accuracy than the single NN model. However,
the adaptive aggregated NN model achieves even

TIC =
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TABLE I
Performance of the Models on the Testing Dataset

Models MAE MRE (%) RMSE TIC

Conventional single NN 0.0374 1.43
Single NN with novel ACO 0.0286 1.09

0.0458 0.0087
0.0341 0.0064

Aggregated NN with 0.0205 0.78 0.0252  0.0047
novel ACO
Adaptive aggregated NN 0.0103 0.39 0.0121 0.0023

with novel ACO

better performance. The MAE, MRE, RMSE, and TIC
are 0.0103, 0.39%, 0.0121, and 0.0023, with percent-
age decreases of 49.76, 50.00, 51.98, and 51.06% com-
pared to those of the aggregated NN model, respec-
tively. These error indicators prove the adaptive
aggregated NN model provides wonderful MI pre-
diction accuracy for the propylene polymerization
process. The performance of the single NN trained
by conventional BP algorithm is also list in Table I,
and it is clear that the performance of single NN
model is better than Conventional single NN model,
which demonstrates the advantage of the new ACO
algorithm. The same thing happened in Table IL

A more distinct illustration in how better the
adaptive aggregated NN model works than the sin-
gle NN model and the aggregated NN model do on
the testing dataset is shown in Figure 2. The curve
marked with crosses is the real MI value obtained
from analysis in laboratory, while the curve marked
with circles is the MI value predicted by single NN
model. The results predicted by aggregated NN
model and adaptive aggregated NN model are
depicted by the curves marked with squares and tri-
angles respectively. Obviously, the adaptive aggre-
gated NN model’s result is best and nearly being
the real MI value on every data point. The aggre-
gated NN model’s prediction is better than single

performance on testing dataset

2.75 T T
—+— analytic Ml values
—&— single NN
| —+&— aggregated NN
27t ‘-\ —&— adaptive aggregated NN (4
T 285f
=
£
=
5
S 26
255
2.6 g
0 5 10 15 20 25 30
samples

Figure 2 Performance of the models on the testing
dataset.

performance on generalizaiton dataset
T T

2.75 T
—+— analytic Ml values
—&— single NN
s 7h —+&— aggregated NN |
: —&— adaptive aggregated NN

2651

261

MI/g.(10min)-1

255+

25+

245 . L L
0

samples

Figure 3 Performance of the models on the generaliza-
tion dataset.

NN model, but not as good as that of the adaptive
aggregated NN model. The visual comparison
proves the great prediction accuracy of the devel-
oped adaptive aggregated model.

To see more about the universality of the pro-
posed MI prediction models, models are further
evaluated on the generalization dataset. An accurate
prediction of MI on this dataset gives a strong sup-
port that the model owns good universality.

Table II lists the specific error indexes for single
model, aggregated NN model, and adaptive aggre-
gated NN model when they predict the MI on gen-
eralization dataset. The adaptive aggregated NN
model defeats the other two models again, with a
decrease of 51.43% in MRE from 0.70 to 0.34%, com-
pared to the aggregated NN model. In addition,
almost the same situation is occurred in terms of
MAE, RMSE, and TIC. Aggregated NN model still
wins over single NN model but looses to adaptively
aggregated NN model very obviously.

Moreover, another visual comparison to study
how the models work on generalization dataset is
given in Figure 3, and it supports the conclusion
even more strongly than the data in Table II does.
The curves marked with circles, squares, and

TABLE II
Performance of the Models on the
Generalization Dataset

Models MAE MRE (%) RMSE TIC
Conventional single NN 0.0381 1.46 0.0460  0.0088
Single NN with 0.0245 0.94 0.0280 0.0055
novel ACO

Aggregated NN with 0.0181 0.70 0.0205 0.0041
novel ACO

Adaptive aggregated 0.0089 0.34 0.0106  0.0020

NN with novel ACO

Journal of Applied Polymer Science DOI 10.1002/app
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TABLE III
The Prediction Results Comparison between Our Work
and the Published Literature

Models MAE MRE (%) RMSE TIC
Ref. 1° - - 1.51 -
Ref. %° 0.0635 2.49 0.0313 0.0138
This work 0.0089 0.34 0.0106 0.0020

triangles are still the MI values predicted by single
NN model, aggregated NN model and adaptive
aggregated NN model, respectively, whereas the
analytic MI value curve is marked with crosses.
Clearly, adaptive aggregated NN model gives a
nearly real MI value prediction, more accurate than
single NN model and aggregated NN model do.
Thus, it is proved that the adaptive aggregated NN
model holds excellent universality in MI prediction
both statistically and graphically.

Table III gives the comparison of prediction
results between our work and published literatures.
The advantage of our work can be revealed clearly,
as the prediction errors given in the work are much
smaller than those of published works. It supports
our research work again.

As complement of this work, Table IV which
includes the list of parameters of the testing dataset

LI ET AL.

to predict Mls of PPs synthesized by various condi-
tions is also given.

CONCLUSIONS

Based on the RBF NN and a novel ACO algorithm
aimed at continuous linking weights optimization of
the network, several estimating models for the PP
MI are developed. The first one is a single NN
model, using only one RBF NN and trained by the
novel ACO. It works pretty well and provides quite
an accurate prediction which can be seen from the
error indicators. Considering the over-fitting prob-
lem that single NN often faces with, several RBF
NN trained sequentially are combined to construct
an aggregated NN model. These individual net-
works are trained to minimize the prediction error
and minimize the correlation with each other, and
because of the training objective, the aggregated NN
model achieves a much better prediction. In terms of
MRE, the aggregated NN model’s prediction error
on testing dataset and generalization dataset
decrease a percentage of 28.44 and 25.53%, respec-
tively, compared to that of single NN model. As
aggregated NN model combines every network with
the same combinational weight, the adding of some

TABLE IV
Parameters of the Testing Dataset to Predict MIs

a fa f5 fi f f I P T
1 0.351 48.33 24.01 11.44 3712.0 4005.0 41.14 29.672 69.95
2 0.277 51.61 24.176 10.11 3741.0 3996.0 40.92 29.637 70.0
3 0.248 51.69 24.18 9.97 3807.0 4000.0 40.64 29.613 69.96
4 0.277 55.02 24.259 10.25 3799.0 3999.0 40.48 29.592 69.96
5 0.317 55.86 24.226 10.15 3811.0 4007.0 39.05 29.66 70.03
6 0.277 56.44 24.385 10.82 3800.0 4000.0 36.31 29.527 69.87
7 0.233 56.76 24.446 10.63 3800.0 3994.0 36.32 29.614 69.96
8 0.2 57.77 24.842 9.16 3800.0 3995.0 35.98 29.6 70.0
9 0.173 52.14 24.874 10.97 3801.0 3992.0 36.33 29.556 70.01
10 0.18 55.95 24.813 10.71 3800.0 4007.0 36.49 29.521 69.99
11 0.147 61.26 24.761 10.1 3800.0 4000.0 36.6 29.57 69.98
12 0.143 64.92 27.047 10.22 3800.0 3993.0 38.96 29.531 70.0
13 0.112 64.33 19.889 10.14 3800.0 3996.0 39.18 29.504 69.98
14 0.143 64.09 27.252 10.62 3799.0 3992.0 39.28 29.562 70.1
15 0.191 60.06 27.982 9.76 3800.0 2933.0 39.56 29.468 70.03
16 0.244 59.72 27.91 9.8 3800.0 2876.0 39.55 29.55 70.07
17 0.196 59.82 27.845 10.59 3799.0 2891.0 39.6 29.494 69.92
18 0.185 59.58 27.853 10.17 3800.0 2903.0 39.48 29.565 70.06
19 0.209 59.16 27.999 9.28 3799.0 2870.0 39.73 29.652 70.13
20 0.269 58.84 27.917 9.85 3763.0 3808.0 40.04 29.439 69.76
21 0.25 58.94 28.205 10.3 3768.0 3790.0 39.9 29.595 70.06
22 0.242 59.36 28.235 9.94 3798.0 3814.0 39.65 29.654 70.16
23 0.165 59.84 28.191 10.09 3796.0 3786.0 39.77 29.574 70.03
24 0.244 60.83 26.204 10.17 3800.0 3759.0 40.19 29.547 69.94
25 0.178 60.87 26.266 11.37 3800.0 3718.0 40.0 29.587 69.99
26 0.223 60.59 26.188 11.0 3798.0 3788.0 39.91 29.494 69.87
27 0.253 62.5 26.213 431 3802.0 3744.0 32.84 29.43 69.79
28 0.221 62.5 26.256 3.32 3800.0 3794.0 31.37 29.541 69.98
29 0.214 62.58 26.298 3.47 3799.0 3768.0 36.31 29.564 70.01
30 0.203 62.28 26.404 6.25 3801.0 3848.0 36.16 29.588 69.99
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relatively poor performance networks will weaken
the role of some good performance networks. Thus,
the combinational weights should be adjusted adap-
tively, to maximize the contribution of good-per-
formance to the aggregated NN model, and because
of this idea, the adaptive aggregated NN model is
developed. It obtains even smaller prediction error
than the aggregated NN model does, with a
decrease percentage of 50.00 and 51.43% in MRE on
testing dataset and generalization dataset respec-
tively, compared to that of aggregated NN model.
Making full use of several networks with minimized
prediction error and least correlation with each other,
the aggregated NN model makes an improvement in
MI prediction over the single NN model. However,
through enhancing the role of relatively good per-
formance networks, the adaptive aggregated NN
model steps further than the aggregated NN model.
The research on the data from a real plant indicates
that the proposed models provide prediction reliabil-
ity and accuracy, especially the adaptive aggregated
NN model, which is robust to some extent and sup-
posed to have promising potential in industrial use.
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